Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

The determinant $\left| {\begin{array}{*{20}{c}}{^x{C_1}}&{^x{C_2}}&{^x{C_3}}\\ {^y{C_1}}&{^y{C_2}}&{^y{C_3}}\\{^z{C_1}}&{^z{C_2}}&{^z{C_3}}\end{array}} \right|$ $=$

A

$\frac{1}{3} \,xyz (x + y) (y + z) (z + x)$

B

$\frac{1}{4} \,xyz (x + y - z) (y + z - x)$

C

$\frac{1}{12} \, xyz (x - y) (y - z) (z - x)$

D

none

Solution

$\left| {\,\begin{array}{*{20}{c}}x&{\frac{{x(x – 1)}}{2}}&{\frac{{x(x – 1)(x – 2)}}{6}}\\y&{\frac{{y(y – 1)}}{2}}&{\frac{{y(y – 1)(y – 2)}}{6}}\\z&{\frac{{z(z – 1)}}{2}}&{\frac{{z(z – 1)(z – 2)}}{6}}\end{array}\,} \right|$ $=$ $\frac{{xyz}}{{12}}\;\;\left| {\,\begin{array}{*{20}{c}}1&x&{{x^2}}\\1&y&{{y^2}}\\1&z&{{z^2}}\end{array}\,} \right|$

$R_1 \rightarrow R_1 – R_2 \, and \, R_2 \rightarrow R_2 – R_3$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.