If $ab + bc + ca = 0$ and $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, then one of the value of $x$ is

  • A

    ${({a^2} + {b^2} + {c^2})^{\frac{1}{2}}}$

  • B

    ${\left[ {\frac{3}{2}({a^2} + {b^2} + {c^2})} \right]^{\frac{1}{2}}}$

  • C

    ${\left[ {\frac{1}{2}({a^2} + {b^2} + {c^2})} \right]^{\frac{1}{2}}}$

  • D

    None of these

Similar Questions

By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let$P=\left[\begin{array}{cc}(-z)^r & z^{2 s} \\ z^{2 s} & z^r\end{array}\right]$ and $I$ be the identity matrix of order $2$ . Then the total number of ordered pairs $(r, s)$ for which $P^2=-I$ is

  • [IIT 2016]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$

By using properties of determinants, show that:

$\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$

$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $