Gujarati
Hindi
2. Electric Potential and Capacitance
normal

The diagram shows three infinitely long uniform line charges placed on the $X, Y $ and $Z$ axis. The work done in moving a unit positive charge from $(1, 1, 1) $ to $(0, 1, 1) $ is equal to

A

$(\lambda\  ln \ 2) / 2\ \pi \varepsilon_0$

B

$(\lambda\  ln\  2)\  /\pi \varepsilon_0$

C

$(3\ \lambda\  ln \ 2)\  / 2\ \pi \varepsilon_0$

D

None

Solution

$d w=\frac{\lambda q}{2 \pi \epsilon_{0} r} d z$

$w=\frac{\lambda q}{2 \pi \epsilon_{0}} \int_{r_{1}}^{r_{2}} \frac{d r}{r}$

$=\frac{\lambda q}{2 \pi \epsilon_{0}} \ln \left(\frac{r_{2}}{r_{1}}\right)$

Now, lets us it as formula $W N=W x+W y+W z$

$\left[W_{i}: \text { Work done by wire in } i \text { direction }\right]$

$=\frac{2 \lambda_{1}(1)}{2 \pi \epsilon_{0}} \ln \left(\frac{\sqrt{2}}{\sqrt{2}}\right)+\frac{3 \lambda(1)}{2 \pi \epsilon_{0}} \ln \left(\frac{1}{\sqrt{2}}\right)+\frac{\lambda}{2 \pi \epsilon_{0}} \ln \left(\frac{1}{\sqrt{2}}\right)$

$=0+\frac{\lambda}{2 \pi \epsilon_{0}}\left[\frac{-3}{2} \ln 2-\frac{1}{2} \ln 2\right]$

$=-\frac{2 \lambda \ln 2}{2 \pi \epsilon_{0}}=\frac{-\lambda \ln 2}{\pi \epsilon_{0}}$

$W_{e x t}=-W N=\frac{\lambda \ln 2}{\pi \epsilon_{0}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.