The escape speed of an electron launched from the surface of a glass sphere of diameter $1\ cm$ that has been charged to $10\ nC$ is $x \times 10^7\ m/sec$ . The value of $x$ is
$8$
$6$
$9$
$12$
A block of mass $m$ containing a net negative charge $-q$ is placed on a frictionless horizontal table and is connected to a wall through an unstretched spring of spring constant $k$ as shown. If horizontal electric field $E$ parallel to the spring is switched on, then the maximum compression of the spring is :-
Three charges $-q, Q$ and $-q$ are placed respectively at equal distances on a straight line. If the potential energy of the system of three charges is zero, then what is the ratio of $Q: q$ ?
In a region of space, suppose there exists a uniform electric field $\vec{E}=10 i\left(\frac{ v }{ m }\right)$. If a positive charge moves with a velocity $\vec{v}=-2 \hat{j}$, its potential energy
A bullet of mass $2\, gm$ is having a charge of $2\,\mu C$. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of $10\,m/s$
A particle of mass $m$ having negative charge $q$ move along an ellipse around a fixed positive charge $Q$ so that its maximum and minimum distances from fixed charge are equal to $r_1$ and $r_2$ respectively. The angular momentum $L$ of this particle is