The escape speed of an electron launched from the surface of a glass sphere of diameter $1\ cm$ that has been charged to $10\ nC$ is $x \times 10^7\ m/sec$ . The value of $x$ is 

  • A

    $8$

  • B

    $6$

  • C

    $9$

  • D

    $12$

Similar Questions

The diagram shows three infinitely long uniform line charges placed on the $X, Y $ and $Z$ axis. The work done in moving a unit positive charge from $(1, 1, 1) $ to $(0, 1, 1) $ is equal to

An electron (charge = $1.6 \times {10^{ - 19}}$ $coulomb$) is accelerated through a potential of $1,00,000$ $volts$. The energy required by the electron is

Consider the configuration of a system of four charges each of value $+q$ . The work done by external agent in changing the configuration of the system from figure $(1)$ to figure $(2)$ is 

A unit positive point charge of mass $m$ is projected with a velocity $V$ inside the tunnel as shown. The tunnel has been made inside a uniformly charged non conducting sphere. The minimum velocity with which the point charge should be projected such it can it reach the opposite end of the tunnel, is equal to

Two charges $-q$ each are separated by distance $2d$. A third charge $+ q$ is kept at mid point $O$. Find potential energy of $+ q$ as a function of small distance $x$ from $O$ due to $-q$ charges. Sketch $P.E.$ $v/s$ $x$ and convince yourself that the charge at $O$ is in an unstable equilibrium.