The dimension of mutual inductance is ............
$\left[ ML ^{2} T ^{-2} A ^{-1}\right]$
$\left[ ML ^{2} T ^{-3} A ^{-1}\right]$
$\left[ ML ^{2} T ^{-2} A ^{-2}\right]$
$\left[ ML ^{2} T ^{-3} A ^{-2}\right]$
The formula $X = 5YZ^2$, $X$ and $Z$ have dimensions of capacitance and magnetic field respectively. What are the dimensions of $Y$ in $SI$ units?
Match List $I$ with List $II$ :
List $I$ (Physical Quantity) | List $II$ (Dimensional Formula) |
$(A)$ Pressure gradient | $(I)$ $\left[ M ^0 L ^2 T ^{-2}\right]$ |
$(B)$ Energy density | $(II)$ $\left[ M ^1 L ^{-1} T ^{-2}\right]$ |
$(C)$ Electric Field | $(III)$ $\left[ M ^1 L ^{-2} T ^{-2}\right]$ |
$(D)$ Latent heat | $(IV)$ $\left[ M ^1 L ^1 T ^{-3} A ^{-1}\right]$ |
Choose the correct answer from the options given below:
The ratio of the dimension of Planck's constant and that of moment of inertia is the dimension of
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
If electronic charge $e$, electron mass $m$, speed of light in vacuum $c$ and Planck 's constant $h$ are taken as fundamental quantities, the permeability of vacuum $\mu _0$ can be expressed in units of