The dimensions of pressure are
$ML{T^{ - 2}}$
$M{L^{ - 2}}{T^2}$
$M{L^{ - 1}}{T^{ - 2}}$
$M^{-1}L^{-1}$
The expression $[M{L^2}{T^{ - 2}}]$ represents
The dimensional formula of permeability of free space $\mu_0$ is
If the speed of light $(c)$, acceleration due to gravity $(g)$ and pressure $(p)$ are taken as the fundamental quantities, then the dimension of gravitational constant is
Dimensions of resistance in an electrical circuit in terms of dimension of mass $M,$ of length $L$ of time $T$ and of current $I$ , would be
Match List $-I$ with List $-II$
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kimeatic energy | $IV$. | $[M L^0T^{–2}]$ |