The dimensions of thermal resistance are

  • A

    ${M^{ - 1}}{L^{ - 2}}{T^3}K$

  • B

    $M{L^2}{T^{ - 2}}{K^{ - 1}}$

  • C

    $M{L^2}{T^{ - 3}}K$

  • D

    $M{L^2}{T^{ - 2}}{K^{ - 2}}$

Similar Questions

Three rods of the same dimensions have thermal conductivities $3k, 2k$ and $k$. They are arranged as shown, with their ends at $100\,^oC, 50\,^oC$ and $0\,^oC$. The temperature of their junction is

The thickness of a metallic plate is $0.4 cm$ . The temperature between its two surfaces is ${20^o}C$. The quantity of heat flowing per second is $50$ calories from $5c{m^2}$ area. In $CGS$ system, the coefficient of thermal conductivity will be

The area of the glass of a window of a room is $10\;{m^2}$ and thickness $2mm$. The outer and inner temperature are ${40^o}C$ and ${20^o}C$ respectively. Thermal conductivity of glass in $MKS$ system is $0.2$. The heat flowing in the room per second will be

In variable state, the rate of flow of heat is controlled by

The three rods shown in figure have identical dimensions. Heat flows from the hot end at a rate of $40 \,W$ in the arrangement $(a)$. Find the rates of heat flow when the rods are joined as in arrangement $(b)$ is ......... $W$ (Assume $K_al=200 \,W / m ^{\circ} C$ and $\left.K_{c u}=400 \,W / m ^{\circ} C \right)$