The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -
$\frac{{\sqrt 3 }}{2}$
$\frac{1}{3}$
$\frac{1}{{3\sqrt 2 }}$
$\frac{1}{{\sqrt 3 }}$
The line, $ lx + my + n = 0$ will cut the ellipse $\frac{{{x^2}}}{{{a^2}}}$ $+$ $\frac{{{y^2}}}{{{b^2}}}$ $= 1 $ in points whose eccentric angles differ by $\pi /2$ if :
The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is
Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to
The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points
If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\pi\over2$, then the eccentricity of the ellipse is