The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -

  • A

    $\frac{{\sqrt 3 }}{2}$

  • B

    $\frac{1}{3}$

  • C

    $\frac{1}{{3\sqrt 2 }}$

  • D

    $\frac{1}{{\sqrt 3 }}$

Similar Questions

The line, $ lx + my + n = 0$  will cut the ellipse $\frac{{{x^2}}}{{{a^2}}}$ $+$ $\frac{{{y^2}}}{{{b^2}}}$ $= 1 $ in points whose eccentric angles differ by $\pi /2$  if :

The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is

Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to

  • [JEE MAIN 2024]

The normal at a point $P$ on the ellipse $x^2+4 y^2=16$ meets the $x$-axis at $Q$. If $M$ is the mid point of the line segment $P Q$, then the locus of $M$ intersects the latus rectums of the given ellipse at the points

  • [IIT 2009]

If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\pi\over2$, then the eccentricity of the ellipse is

  • [IIT 1997]