The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -
$\frac{{\sqrt 3 }}{2}$
$\frac{1}{3}$
$\frac{1}{{3\sqrt 2 }}$
$\frac{1}{{\sqrt 3 }}$
Let $L$ be a tangent line to the parabola $y^{2}=4 x-20$ at $(6,2)$ . If $L$ is also a tangent to the ellipse $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1,$ then the value of $b$ is equal to ..... .
Let $'E'$ be the ellipse $\frac{{{x^2}}}{9}$$+$$\frac{{{y^2}}}{4}$ $= 1$ $\& $ $'C' $ be the circle $x^2 + y^2 = 9.$ Let $P$ $\&$ $Q$ be the points $(1 , 2) $ and $(2, 1)$ respectively. Then :
The equation of the ellipse whose centre is at origin and which passes through the points $(-3, 1)$ and $(2, -2)$ is
If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -
The length of the axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$, are