If electric field intensity of a uniform plane electro magnetic wave is given as
$E =-301.6 \sin ( kz -\omega t ) \hat{a}_{ x }+452.4 \sin ( kz -\omega t )$ $\hat{a}_{y} \frac{V}{m}$
Then, magnetic intensity $H$ of this wave in $Am ^{-1}$ will be
[Given: Speed of light in vacuum $c =3 \times 10^{8} ms ^{-1}$, permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7} NA ^{-2}$ ]
$+0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }+0.8 \sin ( kz -\omega t ) \hat{ a }_{ x }$
$+1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }+1.5 \times 10^{-6}( kz -\omega t ) \hat{ a }_{ x }$
$-0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }-1.2 \sin ( kz -\omega t ) \hat{ a }_{ x }$
$-1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }-1.5 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ x }$
In the $EM$ wave the amplitude of magnetic field $H_0$ and the amplitude of electric field $E_o$ at any place are related as
A plane electromagnetic wave propagating in $\mathrm{x}$-direction is described by
$\mathrm{E}_{\mathrm{y}}=\left(200\ \mathrm{Vm}^{-1}\right) \sin \left[1.5 \times 10^7 \mathrm{t}-0.05\ \mathrm{x}\right] \text {; }$
The intensity of the wave is :(Use $\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )
Consider an electromagnetic wave propagating in vacuum . Choose the correct statement
In an $E.M.$ wave the average energy density is associated with
Radiations of intensity $0.5\,\,W/{m^2}$ are striking a metal plate. The pressure on the plate is