8.Electromagnetic waves
medium

If electric field intensity of a uniform plane electro magnetic wave is given as

$E =-301.6 \sin ( kz -\omega t ) \hat{a}_{ x }+452.4 \sin ( kz -\omega t )$ $\hat{a}_{y} \frac{V}{m}$

Then, magnetic intensity $H$ of this wave in $Am ^{-1}$ will be

[Given: Speed of light in vacuum $c =3 \times 10^{8} ms ^{-1}$, permeability of vacuum $\mu_{0}=4 \pi \times 10^{-7} NA ^{-2}$ ]

A

$+0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }+0.8 \sin ( kz -\omega t ) \hat{ a }_{ x }$

B

$+1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }+1.5 \times 10^{-6}( kz -\omega t ) \hat{ a }_{ x }$

C

$-0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }-1.2 \sin ( kz -\omega t ) \hat{ a }_{ x }$

D

$-1.0 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ y }-1.5 \times 10^{-6} \sin ( kz -\omega t ) \hat{ a }_{ x }$

(JEE MAIN-2022)

Solution

$\overrightarrow{ E }=301.6 \sin ( kz -\omega t )\left(-\hat{ a }_{ x }\right)+452.4 \sin ( kz -\omega t ) \hat{ a }_{ y }$

$\overrightarrow{ B }=\frac{301.6}{ C } \sin ( kz -\omega t )\left(-\hat{a}_{ y }\right)+\frac{452.4}{ C } \sin ( kz -\omega t )\left(-\hat{ a }_{ x }\right)$

$\overrightarrow{ H }=\frac{\overrightarrow{ B }}{\mu_{0}}=\frac{301.6}{\mu C } \sin ( kz -\omega t )\left(-\hat{ a }_{ y }\right)+\frac{452.4}{\mu C } \sin ( kz -\omega t )\left(-\hat{ a }_{ x }\right)$

$\overrightarrow{ H }=-0.8 \sin ( kz -\omega t ) \hat{ a }_{ y }-1.2 \sin ( kz -\omega t ) \hat{ a }_{ x }$

For direction

$\overrightarrow{ E } \times \overrightarrow{ B }$ is direction of $\overrightarrow{ C }$

For first part $\hat{ E }=-\hat{ i }, \hat{ B }= ?$

$\hat{ E } \times \hat{ B }=\hat{ k } \Rightarrow \hat{ B }=-\hat{ j }$

Similarly for second

$\hat{ E }=\hat{ j }, \hat{ B }=?$

$\hat{ E } \times \hat{ B }=\hat{ k } \Rightarrow \hat{ B }=-\hat{ i }$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.