The electric potential $V$ at any point $O$ ($x$, $y$, $z$ all in metres) in space is given by $V = 4{x^2}\,volt$. The electric field at the point $(1m,\,0,\,2m)$ in $volt/metre$ is

  • [IIT 1992]
  • A

    $8$ along negative $X - $ axis

  • B

    $8$ along positive $X - $ axis

  • C

    $16$ along negative $X - $ axis

  • D

    $16$ along positive $Z - $ axis

Similar Questions

The electric potential varies in space according to the relation $V = 3x + 4y$. A particle of mass $0.1\,\, kg$ starts from rest from point $(2, 3·2)$ under the influence of this field. The charge on the particle is $+1\,\, μC$. Assume $V$ and $(x, y)$ are in $S.I.$ $units$ . The time taken to cross the $x-$ axis is.....$s$

The variation of potential with distance $R$ from a fixed point is as shown below. The electric field at $R = 5\,m$ is......$volt/m$

Electric potential in a region is varying according to the relation $V=\frac{3 x^2}{2}-\frac{y^2}{4}$, where $x$ and $y$ are in metre and $V$ is in volt. Electric field intensity (in $N/C$) at a point $(1 \,m , 2 \,m$ ) is ......

Determine the electric field strength vector if the potential of this field depends on $x, y$ coordinates as $V=10$ axy

The maximum electric field that can be held in air without producing ionisation of air is $10^7\,V/m$. The maximum potential therefore, to which a conducting sphere of radius $0.10\,m$ can be charged in air is

  • [AIIMS 2010]