Let $S$ be the set of all real values of $k$ for which the system oflinear equations $x +y + z = 2$ ; $2x +y - z = 3$ ; $3x + 2y + kz = 4$ has a unique solution. Then $S$ is
If $A \ne O$ and $B \ne O$ are $ n × n$ matrix such that $AB = O,$ then
The ordered pair $(a, b)$, for which the system of linear equations $3 x-2 y+z=b$ ; $5 x-8 y+9 z=3$ ; $2 x+y+a z=-1$ has no solution, is
If the system of linear equation $x - 4y + 7z = g,\,3y - 5z = h, \,-\,2x + 5y - 9z = k$ is
consistent, then
If $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,then the value of $ k $ is