Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^3=2^{21}$ where $\alpha, \beta \in Z$, Then a value of $\alpha $ is

  • [JEE MAIN 2024]
  • A

    $3$

  • B

    $5$

  • C

    $17$

  • D

    $9$

Similar Questions

If the system of equations $x + ay = 0,$ $az + y = 0$ and $ax + z = 0$ has infinite solutions, then the value of $a$ is

  • [IIT 2003]

The system of linear equations  $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if

  • [JEE MAIN 2021]

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]

Let the system of linear equations

$x+y+\alpha z=2$

$3 x+y+z=4$

$x+2 z=1$

have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is

  • [JEE MAIN 2022]

The system of equations $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $, has no solution for