3 and 4 .Determinants and Matrices
hard

Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^3=2^{21}$ where $\alpha, \beta \in Z$, Then a value of $\alpha $ is

A

$3$

B

$5$

C

$17$

D

$9$

(JEE MAIN-2024)

Solution

$ |A|=\alpha^2-\beta^2 $

$ |2 A|^3=2^{21} \Rightarrow|A|=2^4 $

$ \alpha^2-\beta^2=16 $

$ (\alpha+\beta)(\alpha-\beta)=16 \Rightarrow \alpha=4 \text { or } 5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.