14.Waves and Sound
hard

The equation of a wave on a string oflinear mass density $0.04$ $kgm^{-1}$ is given by

$y = 0.02sin\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]m$ The tension in the string is  .... $N$

A

$6.25$

B

$4$

C

$12.5$

D

$0.5$

(AIEEE-2010)

Solution

$y=0.02(m) \sin \left[2 \pi\left(\frac{t}{0.04(s)}\right)-\frac{x}{0.50(m)}\right]$

But $y=a \sin (\omega t-k x)$

$\therefore \omega=\frac{2 \pi}{0.04} \Rightarrow v=\frac{1}{0.04}=25 H z$

$k=\frac{2 \pi}{0.50} \Rightarrow \lambda=0.5 \mathrm{m}$

$\therefore$ velocity, $\mathrm{v}=v \lambda=25 \times 0.5 \mathrm{m} / \mathrm{s}=12.5 \mathrm{m} / \mathrm{s}$

Velocity on a string is given by

$v=\sqrt{\frac{T}{\mu}} \therefore T=\mathrm{v}^{2} \times \mu=(12.5)^{2} \times 0.04=6.25 \mathrm{N}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.