The equation of state of a real gas is given by $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where $\mathrm{P}, \mathrm{V}$ and $\mathrm{T}$ are pressure. volume and temperature respectively and $R$ is the universal gas constant. The dimensions of $\frac{a}{b^2}$ is similar to that of :
$PV$
$\mathrm{P}$
$RT$
$\mathrm{R}$
Dimensions of pair are same. Identify the pair
Given below are two statements :
Statement $(I)$ : Dimensions of specific heat is $\left[\mathrm{L}^2 \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
Statement $(II)$ : Dimensions of gas constant is $\left[\mathrm{ML}^2 \mathrm{~T}^{-1} \mathrm{~K}^{-1}\right]$
The dimension of $\frac{1}{2} \varepsilon_0 E ^2$, where $\varepsilon_0$ is permittivity of free space and $E$ is electric field, is
A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for $f(\theta )$ to be a dimensionless quantity ?
Dimensional formula for torque is