The equation of state of a real gas is given by $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where $\mathrm{P}, \mathrm{V}$ and $\mathrm{T}$ are pressure. volume and temperature respectively and $R$ is the universal gas constant. The dimensions of $\frac{a}{b^2}$ is similar to that of :

  • [JEE MAIN 2024]
  • A

    $PV$

  • B

    $\mathrm{P}$

  • C

    $RT$

  • D

     $\mathrm{R}$

Similar Questions

Dimensions of pair are same. Identify the pair

  • [IIT 1986]

Given below are two statements :

Statement $(I)$ : Dimensions of specific heat is $\left[\mathrm{L}^2 \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$

Statement $(II)$ : Dimensions of gas constant is $\left[\mathrm{ML}^2 \mathrm{~T}^{-1} \mathrm{~K}^{-1}\right]$

  • [JEE MAIN 2024]

The dimension of $\frac{1}{2} \varepsilon_0 E ^2$, where $\varepsilon_0$ is permittivity of free space and $E$ is electric field, is

  • [IIT 2000]

A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta  + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for  $f(\theta )$  to be a dimensionless quantity ?

Dimensional formula for torque is

  • [IIT 1983]