The equation of the normal at the point $(4,-1)$ of the circle $x^2+y^2-40 x+10 y=153$ is
$x + 4y = 0$
$4x + y = 3$
$x - 4y = 0$
$4x - y = 0$
Suppose two perpendicular tangents can be drawn from the origin to the circle $x^2+y^2-6 x-2 p y+17=0$, for some real $p$. Then, $|p|$ is equal to
A pair of tangents are drawn from the origin to the circle ${x^2} + {y^2} + 20(x + y) + 20 = 0$. The equation of the pair of tangents is
The equation of normal to the circle $2{x^2} + 2{y^2} - 2x - 5y + 3 = 0$ at $(1, 1)$ is
Let the lengths of intercepts on $x$ -axis and $y$ -axis made by the circle $x^{2}+y^{2}+a x+2 a y+c=0$ $(a < 0)$ be $2 \sqrt{2}$ and $2 \sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line $x +2 y =0,$ is euqal to :
If the length of the tangents drawn from the point $(1,2)$ to the circles ${x^2} + {y^2} + x + y - 4 = 0$ and $3{x^2} + 3{y^2} - x - y + k = 0$ be in the ratio $4 : 3$, then $k =$