The equation of the tangents to the hyperbola $4x^2 -y^2 = 12$ are $y = 4x+ c_1 \,$$ \& \, y = 4x + c_2,$ then $|c_1 -c_2|$ is equal to -

  • A

    $1$

  • B

    $4$

  • C

    $6$

  • D

    $12$

Similar Questions

The foci of a hyperbola are $( \pm 2,0)$ and its eccentricity is $\frac{3}{2}$. A tangent, perpendicular to the line $2 x+3 y=6$, is drawn at a point in the first quadrant on the hyperbola. If the intercepts made by the tangent on the $x$ - and $y$-axes are $a$ and $b$ respectively, then $|6 a|+|5 b|$ is equal to $..........$.

  • [JEE MAIN 2023]

If the tangents drawn to the hyperbola $4y^2 = x^2 + 1$ intersect the co-ordinate axes at the distinct points $A$ and $B$, then the locus of the mid point of $AB$ is

  • [JEE MAIN 2018]

The minimum value of ${\left( {{x_1} - {x_2}} \right)^2} + {\left( {\sqrt {2 - x_1^2}  - \frac{9}{{{x_2}}}} \right)^2}$ where ${x_1} \in \left( {0,\sqrt 2 } \right)$ and ${x_2} \in {R^ + }$.

The locus of a point $P (h, k)$ such that the line $y = hx + k$ is tangent to $4x^2 - 3y^2 = 1$ , is a/an

Let the eccentricity of the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ be $\sqrt{\frac{5}{2}}$ and length of its latus rectum be $6 \sqrt{2}$, If $y =2 x + c$ is a tangent to the hyperbola $H$, then the value of $c ^{2}$ is equal to

  • [JEE MAIN 2022]