Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The equation of the tangents to the hyperbola $4x^2 -y^2 = 12$ are $y = 4x+ c_1 \,$$ \& \, y = 4x + c_2,$ then $|c_1 -c_2|$ is equal to -

A

$1$

B

$4$

C

$6$

D

$12$

Solution

$\left.\frac{d y}{d x}\right|_{(x, y)}=\frac{4 x_{1}}{y_{1}}=4$

$\Rightarrow y_{1}=x_{1}$

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on $4 \mathrm{x}^{2}-\mathrm{y}^{2}=12$

$\Rightarrow \mathrm{x}_{1}=\mathrm{y}_{1}=\pm 2$

$\therefore $ Equation of tangent lines with slope $4$ are

$y=4 x+6 $ and $ y=4 x-6$

$\Rightarrow\left|\mathrm{c}_{1}-\mathrm{c}_{2}\right|=12$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.