The equation of the tangents to the hyperbola $4x^2 -y^2 = 12$ are $y = 4x+ c_1 \,$$ \& \, y = 4x + c_2,$ then $|c_1 -c_2|$ is equal to -
$1$
$4$
$6$
$12$
The reciprocal of the eccentricity of rectangular hyperbola, is
The equation of the common tangent to the curves $y^2 = 8x$ and $xy = -1$ is
$C$ the centre of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$. The tangents at any point $P$ on this hyperbola meets the straight lines $bx - ay = 0$ and $bx + ay = 0$ in the points $Q$ and $R$ respectively. Then $CQ\;.\;CR = $
Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to
Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola $16y^2 - 9x^2 = 1 $ is