- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
If the centre, vertex and focus of a hyperbola be $(0, 0), (4, 0)$ and $(6, 0)$ respectively, then the equation of the hyperbola is
A
$4{x^2} - 5{y^2} = 8$
B
$4{x^2} - 5{y^2} = 80$
C
$5{x^2} - 4{y^2} = 80$
D
$5{x^2} - 4{y^2} = 8$
Solution
(c) Centre $(0, 0)$, vertex $(4,0)$
==> $a = 4$and focus $(6,0)$
==> $ae = 4$
==> $e = \frac{3}{2}$.
Therefore $b = 2\sqrt5$
Hence required equation is $\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{{20}} = 1$
$i.e.$, $5{x^2} – 4{y^2} = 80$.
Standard 11
Mathematics
Similar Questions
Let $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, where $a > b >0$, be $a$ hyperbola in the $xy$-plane whose conjugate axis $LM$ subtends an angle of $60^{\circ}$ at one of its vertices $N$. Let the area of the triangle $LMN$ be $4 \sqrt{3}$..
List $I$ | List $II$ |
$P$ The length of the conjugate axis of $H$ is | $1$ $8$ |
$Q$ The eccentricity of $H$ is | $2$ ${\frac{4}{\sqrt{3}}}$ |
$R$ The distance between the foci of $H$ is | $3$ ${\frac{2}{\sqrt{3}}}$ |
$S$ The length of the latus rectum of $H$ is | $4$ $4$ |
The correct option is: