If the centre, vertex and focus of a hyperbola be $(0, 0), (4, 0)$ and $(6, 0)$ respectively, then the equation of the hyperbola is
$4{x^2} - 5{y^2} = 8$
$4{x^2} - 5{y^2} = 80$
$5{x^2} - 4{y^2} = 80$
$5{x^2} - 4{y^2} = 8$
Let $H _{ n }=\frac{ x ^2}{1+ n }-\frac{ y ^2}{3+ n }=1, n \in N$. Let $k$ be the smallest even value of $n$ such that the eccentricity of $H _{ k }$ is a rational number. If $l$ is length of the latus return of $H _{ k }$, then $21 l$ is equal to $.......$.
An ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the vertices of the hyperbola $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$. Let the major and minor axes of the ellipse $E$ coincide with the transverse and conjugate axes of the hyperbola $H$. Let the product of the eccentricities of $E$ and $H$ be $\frac{1}{2}$. If $l$ is the length of the latus rectum of the ellipse $E$, then the value of $113\,l$ is equal to $....$
A tangent to a hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ intercepts a length of unity from each of the co-ordinate axes, then the point $(a, b)$ lies on the rectangular hyperbola
The line $3x - 4y = 5$ is a tangent to the hyperbola ${x^2} - 4{y^2} = 5$. The point of contact is
Let the foci of a hyperbola $\mathrm{H}$ coincide with the foci of the ellipse $E: \frac{(x-1)^2}{100}+\frac{(y-1)^2}{75}=1$ and the eccentricity of the hyperbola $\mathrm{H}$ be the reciprocal of the eccentricity of the ellipse $E$. If the length of the transverse axis of $\mathrm{H}$ is $\alpha$ and the length of its conjugate axis is $\beta$, then $3 \alpha^2+2 \beta^2$ is equal to :