Gujarati
Hindi
7.Gravitation
normal

The escape velocity for a planet is $v_e.$ A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be

A

$v_e$

B

$\frac{{{v_e}}}{{\sqrt 2 }}$

C

$\frac{{{v_e}}}{{ 2 }}$

D

zero

Solution

From energy conservation

Potential inside sphere $V=-\frac{G M}{2 R^{3}}\left(3 R^{2}-r^{2}\right)$

$V_{S}=-\frac{G M}{R}, V_{0}=-\frac{3 G M}{2 R}$

Loss of potential energy of particle = Gain of kinetic energy

$m\left(V_{S}-V_{0}\right)=\frac{1}{2} m v^{2}$

$v^{2}=2\left[-\frac{G M}{R}-\left(-\frac{3 G M}{2 R}\right)\right] \Rightarrow v=\sqrt{\frac{G M}{R}}$

$v=\sqrt{\frac{2 G M}{R}} \Rightarrow v=\frac{V_{e}}{\sqrt{2}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.