7.Gravitation
hard

Two planets have masses $M$ and $16\, M$ and their radii are $a$ and $2\, a$ respectively. The separation between the centres of the planets is $10\, a.$ A body of mass $m$ is fired from the surface of the larger planet towards the smaller planet along the line joining their centres. For the body to be able to reach at the surface of smaller planet, the minimum firing speed needed is

A

$\sqrt{\frac{ GM ^{2}}{ ma }}$

B

$\frac{3}{2} \sqrt{\frac{5 GM }{ a }}$

C

$4 \sqrt{\frac{ GM }{ a }}$

D

$2 \sqrt{\frac{ GM }{ a }}$

(JEE MAIN-2020)

Solution

$\frac{G M}{x^{2}}=\frac{G(16 M)}{(10 a-x)^{2}}$

$\frac{1}{x}=\frac{4}{(10 a-x)} \quad \Rightarrow 4 x=10 a-x$

$x=2 a$ $….(i)$

$COME$

$-\frac{ GMm }{8 a }-\frac{ G (16 M ) m }{2 a }+ KE$

$=-\frac{ GMm }{2 a }-\frac{ G (16 M ) m }{8 a }$

$KE = GMm \left[\frac{1}{8 a }+\frac{16}{2 a }-\frac{1}{2 a }-\frac{16}{8 a }\right]$

$KE = GMm \left[\frac{1+64-4-16}{8 a }\right]$

$\frac{1}{2} mv ^{2}= GMm \left[\frac{45}{8 a }\right]$

$V =\sqrt{\frac{90 GM }{8 a }}$

$V =\frac{3}{2} \sqrt{\frac{5 GM }{ a }}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.