The excess of pressure inside a soap bubble is twice the excess pressure inside a second soap bubble. The volume of the first bubble is $n$ times the volume of the second where $n$ is
$0.125$
$0.250$
$1$
$2$
Two spherical soap bubbles formed in vacuum has diameter $3.0\,mm$ and $4.0\,mm$ . They coalesce to form a single spherical bubble. If the temperature remains unchanged, find the diameter of the bubble so formed ....... $mm$
What is the excess pressure inside a bubble of soap solution of radius $5.00 \;mm$, given that the surface tension of soap solution at the temperature ($20\,^{\circ} C$) is $2.50 \times 10^{-2}\; N m ^{-1}$ ? If an air bubble of the same dimension were formed at depth of $40.0 \;cm$ inside a container containing the soap solution (of relative density $1.20$), what would be the pressure inside the bubble? ($1$ atmospheric pressure is $1.01 \times 10^{5} \;Pa$ ).
A soap bubble is blown with the help of a mechanical pump at the mouth of a tube. The pump produces a certain increase per minute in the volume of the bubble, irrespective of its internal pressure. The graph between the pressure inside the soap bubble and time $t$ will be-
If the surface tension of a soap solution is $0.03\, MKS$ units, then the excess of pressure inside a soap bubble of diameter $6 \,mm$ over the atmospheric pressure will be
A spherical drop of water has radius $1\, mm$ If surface tension of water is $70 \times {10^{ - 3}}\,N/m$ difference of pressures between inside and out side of the spherical drop is ........ $N/{m^{ - 2}}$