A soap bubble is blown with the help of a mechanical pump at the mouth of a tube. The pump produces a certain increase per minute in the volume of the bubble, irrespective of its internal pressure. The graph between the pressure inside the soap bubble and time $t$ will be-
In capillary pressure below the curved surface of water will be
The pressure at the bottom of a tank containing a liquid does not depend on
A spherical drop of water has radius $1\, mm$ If surface tension of water is $70 \times {10^{ - 3}}\,N/m$ difference of pressures between inside and out side of the spherical drop is ........ $N/{m^{ - 2}}$
A spherical soap bubble of radius $3\,cm$ is formed inside another spherical soap bubble of radius $6\,cm$. If the internal pressure of the smaller bubble of radius $3\,cm$ in the above system is equal to the internal pressure of the another single soap bubble of radius $r\,cm$. The value of $r$ is.......
Formation of bubble are in Column - $\mathrm{I}$ and pressure difference between them are given in Column - $\mathrm{II}$. Match them appropriately.
Column - $\mathrm{I}$ | Column - $\mathrm{II}$ |
$(a)$ Liquid drop in air | $(i)$ $\frac{{4T}}{R}$ |
$(b)$ Bubble of liquid in air | $(ii)$ $\frac{{2T}}{R}$ |
$(iii)$ $\frac{{2R}}{T}$ |