The false statement in the following is
$p \wedge (\sim p)$ is a contradiction
$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \;\sim p)$ is a contradiction
$\sim (\sim p) \Leftrightarrow p$ is a tautology
$p \vee (\sim p)$ is a tautology
Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is
Which of the following statement is true
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to
The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to