The false statement in the following is

  • A

    $p \wedge (\sim p)$ is a contradiction

  • B

    $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \;\sim p)$ is a contradiction

  • C

    $\sim (\sim p) \Leftrightarrow p$ is a tautology

  • D

    $p \vee (\sim p)$ is a tautology

Similar Questions

Negation of $p \wedge( q \wedge \sim( p \wedge q ))$ is

  • [JEE MAIN 2023]

Which of the following statement is true

Among the statements

$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology

$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction

  • [JEE MAIN 2023]

The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to

  • [JEE MAIN 2022]

The number of ordered triplets of the truth values of $p, q$ and $r$ such that the truth value of the statement $(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$ is True, is equal to

  • [JEE MAIN 2023]