The false statement in the following is
$p \wedge (\sim p)$ is a contradiction
$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \;\sim p)$ is a contradiction
$\sim (\sim p) \Leftrightarrow p$ is a tautology
$p \vee (\sim p)$ is a tautology
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee \sim q} \right)} \right) \wedge \left( { \sim p \wedge \sim q} \right)$ is equivalent to
The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ is a tautology, is
Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.
Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology
Which of the following is the negation of the statement "for all $M\,>\,0$, there exists $x \in S$ such that $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$