The statement $(p \Rightarrow q) \vee(p \Rightarrow r)$ is NOT equivalent to.
$(p \wedge(\sim r)) \Rightarrow q$
$(\sim q) \Rightarrow((\sim r) \vee p)$
$p \Rightarrow(q \vee r)$
$(p \wedge(\sim q)) \Rightarrow r$
Negation of "If India wins the match then India will reach in the final" is :-
Negation of “Paris in France and London is in England” is
Which of the following Boolean expressions is not a tautology ?
The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to