- Home
- Standard 12
- Mathematics
The following system of equation $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y - 3z = 0$ has a solution other than $x = y = z = 0$ for $\lambda $ equal to
$1$
$2$
$3$
$5$
Solution
(d) The system of equations has infinitely many (non-trivial) solution,if
$\Delta = 0$ i.e., if $\left| {\,\begin{array}{*{20}{c}}3&{ – 2}&1\\\lambda &{ – 14}&{15}\\1&2&{ – 3}\end{array}\,} \right| = 0$
==> $3(42 – 30) – \lambda (6 – 2) + 1( – 30 + 14) = 0$
==> $\lambda = 5$ .
Similar Questions
Let $\alpha$ and $\beta$ be the distinct roots of the equation $x^2+x-1=0$. Consider the set $T=\{1, \alpha, \beta\}$. For a $3 \times 3$ matrix $M=\left(a_{\ell}\right) 3 \times 3_3$, define $R_l=a_{l 1}+a_{l 2}+a_\beta$ and $C_j=a_{1 j}+a_{2 l}+a_{3 j}$ for $i=1,2,3$ and $j=1,2,3$
Match each entry in $List-I$ to the correct entry in $List-II$.
$List-I$ | $List-II$ |
($P$) The number of matrices $M=\left(a_{i j}\right)_3 \times 3$ with all entries in $T$ such that $R_i=C_j=0$ for all $i, j$ is | ($1$) ($1$) |
($Q$) The number of symmetric matrices $M=\left(a_{i j}\right) 3 \times 3$ with all entries in $T$ such that $C_j=0$ for all $j$ is | ($2$) ($2$) |
($R$) Let $M=\left(a_{i j}\right) 3 \times 3$ be a skew symmetric matrix such that $a_{i j} \in T$ for $i>j$. Then the number of elements in the set $\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y \cdot z \in R, M\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}a_{12} \\ 0 \\ -a_{23}\end{array}\right)\right\}$ is is | ($3$) Infinite |
($S$) Let $M=\left(a_{i j}\right)_3 \times 3$ be a matrix with all entries in $T$ such that $R_i=0$ for all $i$. Then the absolute value of the determinant of $M$ is | ($4$) ($6$) |
($5$) ($0$) |
The correct option is