- Home
- Standard 12
- Mathematics
Solve system of linear equations, using matrix method. $2 x+y+z=1$ ; $x-2 y-z=\frac{3}{2}$ ; $3 y-5 z=9$
$x=2, y=\frac{1}{2},-\frac{3}{2}$
$x=1, y=\frac{1}{2},-\frac{3}{2}$
$x=1, y=\frac{1}{2},-\frac{-3}{2}$
$x=1, y=\frac{-1}{2},-\frac{3}{2}$
Solution
The given system of equation can be written in the form of $A X=B$, where
$A = \left[ {\begin{array}{*{20}{c}}
2&1&1 \\
1&{ – 2}&{ – 1} \\
0&3&{ – 5}
\end{array}} \right],X = \left[ {\begin{array}{*{20}{l}}
x \\
y \\
z
\end{array}} \right]{\text{ and }}B = \left[ {\begin{array}{*{20}{c}}
1 \\
{\frac{3}{2}} \\
9
\end{array}} \right]$
Now,
$|A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34 \neq 0$
Thus $A$ is non-singular. Therefore, its inverse exists.
Now,
$A_{11}=13, A_{12}=5, A_{13}=3$
$A_{21}=8, A_{22}=-10, A_{23}=-6$
$A_{31}=1, A_{32}=3, A_{33}=-5$
$\therefore A^{-1}=\frac{1}{|A|}(a d j A)=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -16 & -5\end{array}\right]$
$\therefore X=A^{-1} B=\frac{1}{34}\left[\begin{array}{ccc}13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5\end{array}\right]\left[\begin{array}{c}1 \\ \frac{3}{2} \\ 9\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{34}\left[\begin{array}{l}13+12+9 \\ 5-15+27 \\ 3-9-45\end{array}\right]$
$=\frac{1}{34}\left[\begin{array}{c}34 \\ 17 \\ -51\end{array}\right]=\left[\begin{array}{c}1 \\ \frac{1}{2} \\ -\frac{3}{2}\end{array}\right]$
Hence, $x=1, y=\frac{1}{2},$ and $z=-\frac{3}{2}$
Similar Questions
Let $p, q, r$ be nonzero real numbers that are, respectively, the $10^{\text {th }}, 100^{\text {th }}$ and $1000^{\text {th }}$ terms of a harmonic progression. Consider the system of linear equations
$x+y+z=1$
$10 x+100 y+1000 z=0$
$q r x+p r y+p q z=0$.
$List-I$ | $List-II$ |
($I$) If $\frac{q}{r}=10$, then the system of linear equations has | ($P$) $x=0, y=\frac{10}{9}, z=-\frac{1}{9}$ as a solution |
($II$) If $\frac{ p }{ r } \neq 100$, then the system of linear equations has | ($Q$) $x =\frac{10}{9}, y =-\frac{1}{9}, z =0$ as a solution |
($III$) If $\frac{p}{q} \neq 10$, then the system of linear equations has | ($R$) infinitely many solutions |
($IV$) If $\frac{p}{q}=10$, then the system of linear equations has | ($S$) no solution |
($T$) at least one solution |
The correct option is: