The frequency distribution:

$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$

 where $A$ is a positive integer, has a variance of $160 .$ Determine the value of $A$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\begin{array}{|c|c|c|c|} \hline x & f_{i} & f_{1} x_{i} & f x_{i}^{2} \\ \hline A & 2 & 2 A & 2 A^{2} \\ \hline 2 A & 1 & 2 A & 4 A^{2} \\ \hline 3 A & 1 & 3 A & 9 A^{2} \\ \hline 4 A & 1 & 4 A & 16 A^{2} \\ \hline 5 A & 1 & 5 A & 25 A^{2} \\ \hline 6 A & 1 & 6 A & 36 A^{2} \\ \hline \text { Total } & n=7 & \Sigma f_{i}=22 A & \Sigma f_{i}^{2}=92 A^{2} \\ \hline \end{array}$

$\therefore \quad \sigma^{2}=\frac{\Sigma f_{t} x_{1}^{2}}{n}-\left(\frac{\Sigma f_{1} x_{1}}{n}\right)^{2}$

$\Rightarrow \quad 160=\frac{92 A^{2}}{7}-\left(\frac{22 A}{7}\right)^{2} \Rightarrow 160=\frac{92 A^{2}}{7}-\frac{484 A^{2}}{49}$

$\Rightarrow \quad 160=(644-484) \frac{A^{2}}{49} \Rightarrow 160=\frac{160 A^{2}}{49}$

$\Rightarrow \quad A^{2}=49 \quad \therefore \quad A=7$

Similar Questions

The mean of the numbers $a, b, 8,5,10$ is $6$ and their variance is $6.8$. If $M$ is the mean deviation of the numbers about the mean, then $25\; M$ is equal to

  • [JEE MAIN 2022]

The frequency distribution:

$\begin{array}{|l|l|l|l|l|l|l|} \hline X & 2 & 3 & 4 & 5 & 6 & 7 \\ f & 4 & 9 & 16 & 14 & 11 & 6 \\ \hline \end{array}$

Find the standard deviation.

The variance of the data $2, 4, 6, 8, 10$ is

Let $x_1, x_2,........,x_n$ be $n$ observations such that $\sum {{x_i}^2 = 300} $ and $\sum {{x_i} = 60} $ on value of $n$ among the following is

The $S.D.$ of a variate $x$ is $\sigma$. The $S.D.$ of the variate $\frac{{ax + b}}{c}$ where $a, b, c$ are constant, is