- Home
- Standard 11
- Mathematics
The mean and standard deviation of $15$ observations were found to be $12$ and $3$ respectively. On rechecking it was found that an observation was read as $10$ in place of $12$ . If $\mu$ and $\sigma^2$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^2+\sigma^2\right)$ is equal to$...................$
$2521$
$3562$
$1245$
$2356$
Solution
Let the incorrect mean be $\mu^{\prime}$ and standard deviation be $\sigma^{\prime}$
We have
$\mu^{\prime}=\frac{\Sigma x_i}{15}=12 \Rightarrow \Sigma x_i=180$
As per given information correct $\Sigma x_i=180-10+12$
$\Rightarrow \mu(\text { correct mean })=\frac{182}{15}$
Also
$ \sigma^{\prime}=\sqrt{\frac{\sum \mathrm{x}_{\mathrm{i}}^2}{15}-144}=3 \Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}^2=2295 $
$\text { Correct } \Sigma \mathrm{x}_{\mathrm{i}}^2=2295-100+144=2339 $
$ \sigma^2(\text { correct variance })=\frac{2339}{15}-\frac{182 \times 182}{15 \times 15}$
Required value
$ =15\left(\mu+\mu^2+\sigma^2\right) $
$ =15\left(\frac{182}{15}+\frac{182 \times 182}{15 \times 15}+\frac{2339}{15}-\frac{182 \times 182}{15 \times 15}\right) $
$ =15\left(\frac{182}{15}+\frac{2339}{15}\right) $
$ =2521$
Similar Questions
From the data given below state which group is more variable, $A$ or $B$ ?
Marks | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
Group $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
Group $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |