The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :

  • A

    $2n\pi$

  • B

    $n\pi$

  • C

    $n\pi /3$

  • D

    $2 n\pi /3$ where $n \in I$

Similar Questions

The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

  • [IIT 1988]

If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is

If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are

$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :

If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $