The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
$2n\pi$
$n\pi$
$n\pi /3$
$2 n\pi /3$ where $n \in I$
The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
$sin 3\theta = 4 sin\, \theta \,sin \,2\theta \,sin \,4\theta$ in $0\, \le \,\theta\, \le \, \pi$ has :
If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $