- Home
- Standard 11
- Physics
The graph below shows the variation of a force $F$ with time $t$ on a body which is moving in a straight line. Dependence of force on time is $F \propto t^{n}$. Initially body is at rest. If the speed of the object is $2 \,m / s$ at $3 \,s$, then the speed at $4 \,s$ will be approximately (in $m / s$ )

$2.5$
$6.5$
$7.8$
$3.1$
Solution

$(b)$ Given force varies as
$F \propto t^{n} \Rightarrow F=k t^{n} \quad \dots(i)$
From graph, we observe
at $t=2 s , F=2 N$
and at $t=4 s , F=16 N$
So, putting the values in Eq $(i)$, we have
$16=k(4)^{n} \text { and } 2=k(2)^{n}$
$\Rightarrow \quad 8=\frac{2^{2 n}}{2^{n}} \Rightarrow n=3$
$\text { Also, } 2=k(2)^{n} \Rightarrow 2=k(2)^{3} \Rightarrow k=\frac{1}{4}$
So, force is given by $F=\frac{t^{3}}{4}$
Now, $F=\frac{d p}{d t},($ where, $p=$ momentum $)$
$\Rightarrow \quad d p=F d t \Rightarrow \int \limits_{v_{i}}^{v_{f}} d p=\int \limits_{\varepsilon_{i}}^{t_{f}} F d t$
$\Rightarrow \quad m\left(v_{f}-v_{i}\right)=\int \limits_{t_{i}}^{t_{f}} \frac{t^{3}}{4} \cdot d t$
$\Rightarrow \quad m\left(v_{f}-v_{i}\right)=\frac{t_{f}^{4}-t_{i}^{4}}{16}\quad \dots(ii)$
Now, when $t_{i}=0$ and $t_{f}=3 s$
We have, $v_{i}=0$ and $v_{f}=2 ms ^{-1}$
So, from Eq. (ii), we have
$2 m=\frac{81}{16} \quad \dots(iii)$
and when we take $t_{i}=0, t_{f}=4 s , v_{i}=0$ and $v_{f}=v$ (let), then again from Eq (ii), we gives
$m v=\frac{256}{16} \quad \dots(iv)$
Dividing Eq. $(iv)$ by Eq. $(iii)$, we get
$\frac{v}{2} =\frac{256}{81}$
$\Rightarrow \quad v= \frac{256 \times 2}{81} \approx 6.5 \,ms ^{-1}$