13.Nuclei
medium

The half life of a radioactive substance is $20$ minutes. The approximate time interval $(t_2 - t_1)$ between the time $t_2$ when $\frac{2}{3}$ of it had decayed and time $t_1$ when $\frac{1}{3}$ of it had decayed is ..........$min$

A

$14$ 

B

$20$

C

$28 $ 

D

$7 $

(AIEEE-2011)

Solution

Number of undecayed atom after time $t_{2};$

$\frac{N_{0}}{3}=N_{0} e^{-\lambda t_{2}}$      …. $(i)$

Number of undecayed atom after time $t_{1};$

$\frac{2 N_{0}}{3}=N_{0} e^{-\lambda t_{1}}$   …. $(ii)$

From $(i)$, $e^{-\lambda t_{2}}=\frac{1}{3}$

$\Rightarrow \quad-\lambda t_{2}=\log _{e}\left(\frac{1}{3}\right)$   …. $(iii)$

From $(ii)$ $-e^{-\lambda t_{2}}=\frac{2}{3}$

$\Rightarrow \quad-\lambda t_{1}=\log _{\mathrm{e}}\left(\frac{2}{3}\right)$   …. $(iv)$

Solving $(iii)$ and $(iv)$, we get $t_{2}-t_{1}=20 \mathrm{\,min}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.