The heat is flowing through two cylindrical rods of same material. The diameters of the rods are in the ratio $1 : 2$ and their lengths are in the ratio $2 : 1$ . If the temperature difference between their ends is the same, the ratio of rate of flow of heat through them will be
$1:1$
$2:1$
$1:4$
$1:8$
rod of $40\, cm$ in length and temperature difference of ${80^o}C$ at its two ends. $A$ nother rod $B$ of length $60\, cm$ and of temperature difference ${90^o}C$, having the same area of cross-section. If the rate of flow of heat is the same, then the ratio of their thermal conductivities will be
A copper rod $2\,m$ long has a circular cross-section of radius $1\, cm$. One end is kept at $100^o\,C$ and the other at $0^o\,C$ and the surface is covered by nonconducting material to check the heat losses through the surface. The thermal resistance of the bar in degree kelvin per watt is (Take thermal conductivity $K = 401\, W/m-K$ of copper):-
Which of the following statements is/are $CORRECT$ Correct option are
$(i)$ a body with large reflectivity is a poor emitter
$(ii)$ a brass tumbler feels much colder than a wooden tray on a chilly day
$(iii)$ the earth without its atmosphere would be inhospitably cold
$(iv)$ heating systems based on circulation of steam are more efficient in warming a building than those based on circulation of hot water
The dimensions of thermal resistance are
Two rods of same length and material transfer a given amount of heat in $12$ seconds, when they are joined end to end. But when they are joined lengthwise, then they will transfer same heat in same conditions in ....... $\sec$