The height at which the weight of a body becomes $1/16^{th}$, its weight on the surface of earth (radius $R$), is
$3R$
$4R$
$5R$
$15R$
A small ball of mass $'m'$ is released at a height $'R'$ above the Earth surface, as shown in the figure. If the maximum depth of the ball to which it goes is $R/2$ inside the Earth through a narrow grove before coming to rest momentarily. The grove, contain an ideal spring of spring constant $K$ and natural length $R,$ the value of $K$ is ( $R$ is radius of Earth and $M$ mass of Earth)
The change in the value of $g$ at a height $h$ above the surface of the earth is the same as at a depth $d$ below the surface of earth. When both $d$ and $h$ are much smaller than the radius of earth, then which one of the following is correct ?
The force of gravitation is
What should be the angular speed of the earth, so that a body lying on the equator may appear weightlessness $(g = 10\,m/s^2, R = 6400\,km)$
A mass $m$ , travelling at speed $V_0$ in a straight line from far away is deflected when it passes near a black hole of mass $M$ which is at a perpendicular distance $R$ from the original line of flight. $a$ , the distance of closest approach between the mass and the black hole is given by the relation