Gujarati
Hindi
7.Gravitation
normal

The orbit of geostationary satellite is circular, the time period of satellite depends on $(i)$ mass of the satellite $(ii)$ mass of the earth $(iii)$ radius of the orbit $(iv)$ height of the satellite from the surface of the earth

A

$(i)$ only

B

$(i)$ and $(ii)$

C

$(i), (ii)$ and $(iii)$

D

$(ii), (iii)$ and $(iv)$

Solution

$\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^{2}}=\mathrm{m} \omega^{2}(\mathrm{R}+\mathrm{h})$

$\omega=\sqrt{\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{3}}}=\frac{2 \pi}{\mathrm{T}}$

$T$ depends upon mass of earth's, radius of orbit.

Option is $( 4)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.