The height to which a cylindrical vessel be filled with a homogeneous liquid, to make the average force with which the liquid presses the side of the vessel equal to the force exerted by the liquid on the bottom of the vessel, is equal to
Half of the radius of the vessel
Radius of the vessel
One-fourth of the radius of the vessel
Three-fourth of the radius of the vessel
Air is streaming past a horizontal aeroplane wing such that its speed is $120\, m/s$ over the upper surface and $90\, m/s$ at the lower surface. If the density of air is $1.3\, kg/m^3$ and the wing is $10\, m$ long and has an average width of $2\, m$ , then the difference of the pressure on the two sides of the wing is ........ $N/m^2$
What is the pressure on a swimmer $20 \,m$ below the surface of water is ..... $atm$
Water drop whose radius is $0.0015\, mm$ is falling through the air. If the coefficient of viscosity of air is $1.8 \times 10^{-5}\, kg/m-s$, then assuming buoyancy force as negligible the terminal velocity of the dorp will be
Horizontal tube of non-uniform cross-section has radius of $0.2\,m$ and $0.1\,m$ respectively at $P$ and $Q$. For streamline flow of liquid, the rate of liquid flow
For a constant hydraulic stress on an object, the fractional change in the object’s volume $(\Delta V/V)$ and its bulk modulus $(B)$ are related as