Gujarati
Hindi
9-1.Fluid Mechanics
normal

Two drops of equal radius are falling through air with a steady velocity of $5\,cm/s$. If the two drops coalesce, then its terminal velocity will be

A

${4^{\frac{1}{3}}} \times 5\,cm/s$

B

${4^{\frac{1}{3}}}\,cm/s$

C

${5^{\frac{1}{3}}} \times 4\,cm/s$

D

${4^{\frac{2}{3}}} \times 5\,cm/s$

Solution

When $n$ drops of radius $r$ combine to form single drop of radius $R,$ then mass remains same hence

$\left( {\frac{4}{3}} \right)\pi {R^3}\rho  = \left( {\frac{4}{3}} \right)\pi n{r^3}\rho $

$\mathrm{R}^{3}=\mathrm{nr}^{3}$

Hence $n=2$ hence $R^{3}=2 r^{3}$ i.e. $R=2^{(1 / 3)} \cdot r$

When drop of radius r falls through a medium, then velocity $\vee \propto r^{2}$

$\therefore \left( {\frac{{{v_2}}}{{{v_1}}}} \right) = {\left( {\frac{{{r_2}}}{{{r_1}}}} \right)^2}$

Here $\mathrm{V}_{1}=5 \mathrm{cm} / \mathrm{s}$

$r_{2}=R$

$r_{1}=r$

$\therefore {V_2} = 5{\left( {\frac{R}{r}} \right)^2}$

$ = 5 \times \left[ {\frac{{\left( {{2^{\left( {1/3} \right)}}.r} \right)}}{r}} \right]$

$\mathrm{V}^{2}=5 \times 4^{(1 / 3)} \mathrm{cm} / \mathrm{s}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.