The inclined surfaces of two movable wedges of same mass $M$ are smoothly conjugated with the horizontal plane as shown in figure. $A$ washer of mass $m$ slides down the left wedge from a height $h$. To what maximum height will the washer rise along the right wedge? Neglect friction.
$\frac{h}{{{{(M + m)}^2}}}$
$\frac{{hM}}{{{{(M + m)}^2}}}$
$h{\left( {\frac{M}{{M + m}}} \right)^2}$
$h\left( {\frac{M}{{M + m}}} \right)$
Two particles of masses $m_1, m_2$ move with initial velocities $u_1$and $u_2$ On collision, one of the particles get excited to higher level, after absorbing energy $\varepsilon $. If final velocities of particles be $v_1$ and $v_2$ then we must have
A rain drop of radius $2\; mm$ falls from a helght of $500 \;m$ above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original hetght, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done by the gravitational force on the drop in the first and second half of its journey ? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is $10\; m s ^{-1} ?$
A particle $(\mathrm{m}=1\; \mathrm{kg})$ slides down a frictionless track $(AOC)$ starting from rest at a point $A$ (height $2\; \mathrm{m}$ ). After reaching $\mathrm{C}$, the particle continues to move freely in air as a projectile. When it reaching its highest point $P$ (height $1 \;\mathrm{m}$ ). the kinetic energy of the particle (in $\mathrm{J}$ ) is : (Figure drawn is schematic and not to scale; take $\left.g=10 \;\mathrm{ms}^{-2}\right)$
A ball is projected from top of a tower with a velocity of $5\,\, m/s$ at an angle of $53^o$ to horizontal. Its speed when it is at a height of $0.45 \,\,m$ from the point of projection is ........ $m/s$
A space craft of mass $'M' $ and moving with velocity $ 'v' $ suddenly breaks in two pieces of same mass $m$. After the explosion one of the mass $ 'm'$ becomes stationary. What is the velocity of the other part of craft