The kinetic energy possessed by a body of mass $m$ moving with a velocity $ v$ is equal to $\frac{1}{2}m{v^2}$, provided
The body moves with velocities comparable to that of light
The body moves with velocities negligible compared to the speed of light
The body moves with velocities greater than that of light
None of the above statement is correcst
A radio receiver antenna that is $2 \,m$ long is oriented along the direction of the electromagnetic wave and receives a signal of intensity $5 \times {10^{ - 16}}W/{m^2}$. The maximum instantaneous potential difference across the two ends of the antenna is
A plane EM wave is propagating along $\mathrm{x}$ direction. It has a wavelength of $4 \mathrm{~mm}$. If electric field is in y direction with the maximum magnitude of $60 \mathrm{Vm}^{-1}$, the equation for magnetic field is:$7$
Which scientist first time produced electromagnetic waves in laboratory?
In an electromagnetic wave, the amplitude of electric field is $1 V/m.$ the frequency of wave is $5 \times {10^{14}}\,Hz$. The wave is propagating along $z-$ axis. The average energy density of electric field, in $Joule/m^3$, will be
In an electromagnetic wave the electric field vector and magnetic field vector are given as $\vec{E}=E_{0} \hat{i}$ and $\vec{B}=B_{0} \hat{k}$ respectively. The direction of propagation of electromagnetic wave is along.