- Home
- Standard 11
- Physics
5.Work, Energy, Power and Collision
hard
The length of a spring is a when $\alpha $ force of $4\,N$ is applied on it and the length is $\beta $ when $5\,N$ force is applied. Then the length of spring when $9\,N$ force is applied is
A
$5\beta \, - \,4\alpha $
B
$\beta \, - \,\alpha $
C
$5\alpha \, - \,4\beta $
D
$9\,(\beta - \alpha )$
Solution

Let the natural length of the spring $=\ell_{0}$ From figure
$4=\mathrm{k}\left(\alpha-\ell_{0}\right) \ldots(\mathrm{i})$
$5=\mathrm{k}\left(\beta-\ell_{0}\right) \ldots(\mathrm{ii})$
$9=k\left(\gamma-\ell_{0}\right) \ldots(\text { iii })$
eq. $\frac{(\mathrm{iii})-(i)}{(\mathrm{iii})-(\mathrm{ii})} \Rightarrow \frac{5}{4}=\frac{\mathrm{k}(\gamma-\alpha)}{\mathrm{k}(\gamma-\beta)}$
$y=5 \beta-4 \alpha$
Standard 11
Physics
Similar Questions
hard
hard
hard