रेखा $lx + my + n = 0$ दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ पर अभिलम्ब है, यदि
$\frac{{{a^2}}}{{{m^2}}} + \frac{{{b^2}}}{{{l^2}}} = \frac{{({a^2} - {b^2})}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} + \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
$\frac{{{a^2}}}{{{l^2}}} - \frac{{{b^2}}}{{{m^2}}} = \frac{{{{({a^2} - {b^2})}^2}}}{{{n^2}}}$
इनमें से कोई नहीं
यदि दीर्घवृत्त $x^2+4 y^2=36$ के अंतर्गत, केन्द्र $(2,0)$ के सबसे बड़े वृत्त की त्रिज्या $\mathrm{r}$ है, तो $12 \mathrm{r}^2$ बराबर है -
मान लीजिए $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a > b$, एक दीर्घवृत है जिसकी नाभियाँ $F_1$ एवं $F_2$ हैं। $A O$ इसकी अर्धलघु $(semi-minor)$ अक्ष है, और $O$ दीर्घवृत का केंद्र है। रेखाएँ $A F_1$ एवं $A F_2$ को बढ़ाने पर वो दीर्घवृत को पुन: क्रमशः $B$ एवं $C$ बिन्दुओं पर काटती हैं। मान लीजिए कि $A B C$ एक समबाहु त्रिभुज है, तब दीर्घवृत की उत्केन्द्रता निम्न है :
किसी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए, यदि अतिपरवलय $x^{2}-y^{2} \sec ^{2} \theta=$ 10 को उत्केन्द्रता, दीर्घवृत्त, $x ^{2} \sec ^{2} \theta+ y ^{2}=5$ की उत्केन्द्रता का $\sqrt{5}$ गुणा है, तो दीर्घवृत्त की नाभिलम्ब जीवा की लम्बाई बराबर है -
उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है