Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

The loss in weight of a solid when immersed in a liquid at $0^o C$ is $W_0$ and at $t^o C$ is $W$. If cubical coefficient of expansion of the solid and the liquid by $\gamma_s$ and $\gamma_l$ respectively, then $W$ is equal to :

A

$W_0 [1 + ( \gamma _s -\gamma _l) t]$

B

$W_0 [1 - (\gamma_s -\gamma_l)t]$

C

$W_0 [(\gamma_s -\gamma_l) t]$

D

$W_0t/(\gamma_s -\gamma_l)$

Solution

$U_{0}=V_{0} \sigma_{L}^{0} g=W_{0}$ and $U_{t}=V_{t} \sigma_{L}^{t} g=W$

$\frac{W}{W_{0}}=\frac{V_{t}}{V_{0}} \times \frac{\sigma_{L}^{t}}{\sigma_{L}^{0}}=\frac{\left(1+\gamma_{B} \Delta \theta\right)}{\left(1+\gamma_{L} \Delta \theta\right)}$

$=\left(1+\gamma_{S} \Delta \theta\right)\left(1+\gamma_{L} \Delta \theta\right)^{-1}=1+\gamma_{S} \Delta \theta-\gamma_{L} \Delta \theta$

$\left.=W=W_{0}\left[1+\left(\gamma_{S}-\gamma_{L}\right) \Delta \theta\right)\right]$

$=W_{0}\left[1+\left(\gamma_{S}-\gamma_{L}\right) t\right]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.