The loss in weight of a solid when immersed in a liquid at $0^o C$ is $W_0$ and at $t^o C$ is $W$. If cubical coefficient of expansion of the solid and the liquid by $\gamma_s$ and $\gamma_l$ respectively, then $W$ is equal to :
$W_0 [1 + ( \gamma _s -\gamma _l) t]$
$W_0 [1 - (\gamma_s -\gamma_l)t]$
$W_0 [(\gamma_s -\gamma_l) t]$
$W_0t/(\gamma_s -\gamma_l)$
A simple pendulum made of a bob of mass $m$ and a metallic wire of negligible mass has time period $2s$ at $T = 0\,^oC$ . If the temeprature of the wire is increased and the corresponding change in its time peirod is plotted against its temperature, the resulting graph is a line of slope $S$. If the coefficient of linear expansion of metal is $\alpha $ then the value of $S$ is
Two straight metallic strips each of thickness $t$ and length $\ell$ are rivetted together. Their coefficients of linear expansions are $\alpha_1$ and $\alpha_2$. If they are heated through temperature $\Delta T$, the bimetallic strip will bend to form an arc of radius
A rod of length $2m$ rests on smooth horizontal floor. If the rod is heated from $0^o C$ to $20^o C$. Find the longitudinal strain developed? $(\alpha = 5 × 10^{-5}/^o C)$
A copper rod of $88\; \mathrm{cm}$ and an aluminum rod of unknown length have their increase in length independent of increase in temperature. The length of aluminum rod is....$cm$
$( \alpha_{Cu}=1.7 \times 10^{-5}\; \mathrm{K}^{-1}$ and $\alpha_{Al}=2.2 \times 10^{-5} \;\mathrm{K}^{-1} ) $
A cuboid $ABCDEFGH$ is anisotropic with $\alpha_x = 1 × 10^{-5} /^o C$, $\alpha_y = 2 × 10^{-5} /^o C$, $\alpha_z = 3 × 10^{-5} /^o C$. Coefficient of superficial expansion of faces can be