1.Units, Dimensions and Measurement
hard

The main scale of a vernier calliper has $n$ divisions/ $\mathrm{cm}$. $n$ divisions of the vernler scale coincide with $(\mathrm{n}-1)$ divisions of maln scale. The least count of the vernler calliper is,

A

$\frac{1}{(n+1)(n-1)} \mathrm{cm} $

B

 $\frac{1}{n}\; \mathrm{cm}$

C

 $\frac{1}{n^2}\; \mathrm{cm}$

D

 $\frac{1}{n(n+1)}\; \mathrm{cm}$

(NEET-2019)

Solution

$\mathrm{n}(\mathrm{USD})=(\mathrm{n}-1) \mathrm{MSD} $$\Rightarrow 1 \mathrm{VSD}=\frac{(\mathrm{n}-1)}{\mathrm{n}} \mathrm{MSD}$

Least count $=1 \mathrm{MSD}-1 \mathrm{VSD}=\left[1-\frac{(\mathrm{n}-1)}{\mathrm{n}}\right] \mathrm{MSD}=\frac{1}{\mathrm{n}} \mathrm{MSD}$$=\frac{1}{\mathrm{n}}\left(\frac{1}{\mathrm{n}}\right) \mathrm{cm}=\frac{1}{\mathrm{n}^{2}} \mathrm{cm}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.