3 and 4 .Determinants and Matrices
easy

The matrix $\left[ {\begin{array}{*{20}{c}}2&\lambda &{ - 4}\\{ - 1}&3&4\\1&{ - 2}&{ - 3}\end{array}} \right]$is non singular, if

A

$\lambda \ne - 2$

B

$\lambda \ne 2$

C

$\lambda \ne 3$

D

$\lambda \ne - 3$

Solution

(a) The given matrix $A = \left[ {\begin{array}{*{20}{c}}2&\lambda &{ – 4}\\{ – 1}&3&4\\1&{ – 2}&{ – 3}\end{array}} \right]$ is non singular, if $|A|\, \ne 0$

$|A|\,\, = \left| {\,\begin{array}{*{20}{c}}2&\lambda &{ – 4}\\{ – 1}&3&4\\1&{ – 2}&{ – 3}\end{array}\,} \right|\,$=$\left| {\,\begin{array}{*{20}{c}}1&{\lambda + 3}&0\\{ – 1}&3&4\\1&{ – 2}&{ – 3}\end{array}\,} \right|\,$,$[{R_1} \to {R_2} + {R_1}]$

= $\left| {\,\begin{array}{*{20}{c}}1&{\lambda + 3}&0\\0&1&1\\0&{ – \lambda – 5}&{ – 3}\end{array}\,} \right|$$\left[ {\begin{array}{*{20}{c}}{{R_2} \to {R_2} + {R_3}}\\{{R_3} \to {R_3} – {R_1}}\end{array}} \right]$

= $1\,( – 3 + \lambda + 5) \ne 0$

$ \Rightarrow \lambda + 2 \ne 0$ $ \Rightarrow \lambda \,\, \ne – 2.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.