- Home
- Standard 11
- Mathematics
13.Statistics
medium
If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are $56$ and $66.2$ respectively, then $\alpha^2+\beta^2$ is equal to
A
$6435$
B
$6798$
C
$6344$
D
$4312$
(JEE MAIN-2024)
Solution
$ \overline{\mathrm{x}}=56 $
$ \sigma^2=66.2 $
$ \Rightarrow \frac{\alpha^2+\beta^2+25678}{10}-(56)^2=66.2 $
$ \therefore \alpha^2+\beta^2=6344$
Standard 11
Mathematics
Similar Questions
Calculate the mean, variance and standard deviation for the following distribution:
Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
$f_i$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
hard
If the mean and variance of the frequency distribution
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
are $9$ and $15.08$ respectively, then the value of $\alpha^2+\beta^2-\alpha \beta$ is $…………$.