The mechanism of the reaction $2NO_2 + F_2 \to 2NO_2F$ is
$(i)\,\,N{O_2}\,\xrightarrow{{slow}}\,NO + O$
$(ii)\,\,{F_2} + O + NO\,\xrightarrow{{fast}}\,N{O_2}F + F$
$(iii)\,\,F + N{O_2}\,\xrightarrow{{fast}}\,N{O_2}F$
Select the correct one
the reaction is of $3^{rd}$ order
the molecularity of the reaction is sum of molecularities of all steps
reaction is zero order w.r.t. $F_2$
half life of reaction depends upon initial conc. of $NO_2$
Match the rate expressions in $LIST-I$ for the decomposition of $X$ with the corresponding profiles provided in $LIST-II$. $X _5$ and $k$ constants having appropriate units.
What is molecularity of a relation ? Explain its types by examples.
Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.
Experiment No. | $\begin{array}{c}{[ A ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ B ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ C]} \\ \left( mol dm ^{-3}\right)\end{array}$ | Rate of reaction $\left( mol dm ^{-3} s ^{-1}\right)$ |
$1$ | $0.2$ | $0.1$ | $0.1$ | $6.0 \times 10^{-5}$ |
$2$ | $0.2$ | $0.2$ | $0.1$ | $6.0 \times 10^{-5}$ |
$3$ | $0.2$ | $0.1$ | $0.2$ | $1.2 \times 10^{-4}$ |
$4$ | $0.3$ | $0.1$ | $0.1$ | $9.0 \times 10^{-5}$ |
The rate of the reaction for $[ A ]=0.15 mol dm ^{-3},[ B ]=0.25 mol dm ^{-3}$ and $[ C ]=0.15 mol dm ^{-3}$ is found to be $Y \times 10^{-5} mol dm d ^{-3} s ^{-1}$. The value of $Y$ i. . . . . . .
In hydrogenation reaction at ${27\,^o}C$, it is observed that hydrogen gas pressure falls from $2\,atm$ to $1.2\,atm$ in $50\,\min$. Calculate the rate of disappearance of hydrogen
If the rate of the reaction is equal to the rate constant, the order of the reaction is