With the decrease of current in the primary coil from $2\,amperes$ to zero value in $0.01\,s$ the $emf$ generated in the secondary coil is $1000\,volts$. The mutual inductance of the two coils is......$H$

  • [AIIMS 2007]
  • A

    $1.25$

  • B

    $2.50$

  • C

    $5$

  • D

    $10$

Similar Questions

A small circular loop of wire of radius $a$ is located at the centre of a much larger circular wire loop of radius $b$. The two loops are in the same plane. The outer loop of radius $b$ carries an alternating current $I = I_0\, cos\, (\omega t)$ . The emf induced in the smaller inner loop is nearly

  • [JEE MAIN 2017]

A circular loop of radius $0.3\, cm$ lies parallel to a much bigger circular loop of radius $20 \,cm$. The centre of the small loop on the axis of the bigger loop. The distance between their centres is $15\, cm$. If a current of $20\, A$ flows through the smaller loop, then the flux linked with bigger loop is

  • [AIIMS 2018]

An $e.m.f.$ of $100\,millivolts$ is induced in a coil when the current in another nearby coil becomes $10\, ampere$ from zero in $0.1\,second$ . The coefficient of mutual induction between the two coils will be.....$millihenry$

A coil of radius $1\, cm$ and of turns $100$ is placed in the middle of a long solenoid of  radius $5\, cm$. and having $5\, turns/cm$. parallel to the axis of solenoid The mutual  inductance in millihenery will be

Two coils of self inductances $2\, mH$ and $8\, mH$ Hare placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is......$mH$