The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is
$\left( {^ \sim p \wedge q} \right) \wedge p$
$\left( {^ \sim p \wedge q} \right) \vee p$
$\left( {^ \sim p \wedge q} \right){ \vee \,^ \sim }p$
$\left( {^ \sim p{ \wedge ^ \sim }q} \right){ \wedge \,^ \sim }q$
$\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ is logically equivalent to
Which of the following pairs are not logically equivalent ?
The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to