$p \Rightarrow q$ can also be written as
$p \Rightarrow \;\sim q$
$\sim p \vee q$
$\sim q \Rightarrow \sim p$
None of these
(b)$p \Rightarrow q \equiv \;\sim p \vee q$.
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to
The statement $A \rightarrow( B \rightarrow A )$ is equivalent to
The statement $(\sim( p \Leftrightarrow \sim q )) \wedge q$ is :
The statement $p \to ( q \to p)$ is equivalent to
Confusing about what to choose? Our team will schedule a demo shortly.