$p \Rightarrow q$ can also be written as
$p \Rightarrow \;\sim q$
$\sim p \vee q$
$\sim q \Rightarrow \sim p$
None of these
If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
Consider the following two propositions:
$P_1: \sim( p \rightarrow \sim q )$
$P_2:( p \wedge \sim q ) \wedge((\sim p ) \vee q )$
If the proposition $p \rightarrow((\sim p ) \vee q )$ is evaluated as $FALSE$, then
If the truth value of the statement $(P \wedge(\sim R)) \rightarrow((\sim R) \wedge Q)$ is $F$, then the truth value of which of the following is $F$ ?
For the statements $p$ and $q$, consider the following compound statements :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
Then which of the following statements is correct?