The number of solutions of the pair of equations $ 2 \sin ^2 \theta-\cos 2 \theta=0 $, $ 2 \cos ^2 \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is

  • [IIT 2007]
  • A

    zero

  • B

    one

  • C

    two

  • D

    four

Similar Questions

If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)

Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :

The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi  + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi  + x}}{3}} \right) = 1$ is

Number of solutions of equation $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ in $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$  is

(where $sgn(.)$ denotes signum function) -