Gujarati
Trigonometrical Equations
normal

One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval

A

$\left(0^{\circ}, 10^{\circ}\right]$

B

$\left(10^{\circ}, 20^{\circ}\right)$

C

$\left(20^{\circ}, 30^{\circ}\right)$

D

$\left(30^{\circ}, 40^{\circ}\right]$

(KVPY-2017)

Solution

(b)

Given,

$8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta =0$

$2\left(4 \sin ^3 \theta\right)-7 \sin \theta+\sqrt{3} \cos \theta =0$

$2(3 \sin \theta-\sin 3 \theta)-7 \sin \theta$

$+\sqrt{3} \cos \theta =0$

$6 \sin \theta-2 \sin 3 \theta-7 \sin \theta$

$+\sqrt{3} \cos \theta =0$

$\sqrt{3} \cos \theta-\sin \theta-2 \sin 3 \theta =0$

$\frac{\sqrt{3}}{2} \cos \theta-\frac{1}{2} \sin \theta =\sin 3 \theta$

$\sin \left(\frac{\pi}{3}-\theta\right) =\sin 3 \theta$

$\frac{\pi}{3}-\theta=3 \theta \Rightarrow 4 \theta=60^{\circ} \Rightarrow \theta =15^{\circ}$

$\theta \in\left(10^{\circ}, 20^{\circ}\right]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.