One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
$\left(0^{\circ}, 10^{\circ}\right]$
$\left(10^{\circ}, 20^{\circ}\right)$
$\left(20^{\circ}, 30^{\circ}\right)$
$\left(30^{\circ}, 40^{\circ}\right]$
If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is
If $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ then $tan(x/2)cot(y/2) =$
The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is
The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is
Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.