- Home
- Standard 11
- Mathematics
6.Permutation and Combination
hard
The number of ways in which an examiner can assign $30$ marks to $8$ questions, giving not less than $2$ marks to any question, is
A
$^{30}{C_7}$
B
$^{21}{C_8}$
C
$^{21}{C_7}$
D
$^{30}{C_8}$
(JEE MAIN-2013)
Solution
$30$ marks to be alloted to $8$ question. Each question has to be given $ \geqslant 2$ marks
Let questions be $a,b,c,d,e,f,g,h$ and $a+b+c+d+e+f+g+h=30$
Let $a=a_1+2$ so, ${a_1} \geqslant 0$
$b=a_2+2$ so, ${a_2} \geqslant 0,………{a_8} \geqslant 0$
So, $\left. \begin{gathered}
{a_1} + {a_2} + ……… + {a_8} \hfill \\
+ 2 + 2 + ………. + 2 \hfill \\
\end{gathered} \right\} = 30$
$ \Rightarrow \,{a_1} + {a_2} + ……. + {a_8} = 30 – 16 = 14$
So, this is a problem of distributing $14$ articles in $8$ groups.
Number of ways ${ = ^{14 + 8 – 1}}{C_{8 – 1}} = 21{C_7}$
Standard 11
Mathematics